

DS3 Distributed Storage and Solar study

Paris Hadjiodysseos Smart Grid Development Engineer

Northern Powergrid key facts

The Problem

- PV clusters cause
 - Thermal and voltage
 - Reverse power flow
- Stress networks
- Faults
- Poor customer service

Can batteries help?

- Absorb generation
- Reduce demand

DS3 Project

- 2 year NIA funded community project focusing on social housing
- £300k batteries, monitoring, data analysis & PM

What's in it for customers

- Reduce electricity bills
- Potentially reduce reinforcement works

What's in it for Northern Powergrid

- Understand combined impact of PV & Storage on network design
- Explore the potential of aggregator-controlled behind-the-meter batteries by trialing different operating modes

DS3 Project

- 27 solar panels (2.7-3.68kW)
- 40 Batteries (0.43kW/2-3 kWh)
 - 31 with PVs
 - 9 on their own
- Data
 - Households: consumption, generation, power flow, SoC, voltage (AC)
 - Substation: feeder and transformer current and voltage, temperature

Battery Operating Modes

7

April	2017	July	2017
		Threshold Charging	
October	2017	January	2018
Threshold Charging		Maximum Impact	No Impact Demand-Led
April	2018	July	2018
Demand-Led	Maximum Impact	Advanced Predicted Demand-Led Generation	No Predicted Threshold Impact Generation Charging
October	2018	January	2019
Threshold Charging		Maximum Impact	Demand-Led

Threshold charging (default)

- Charges/discharges based on excess generation or demand imposing no extra cost to owner
- Significant generation being exported despite low SoC (left, winter)
- Low consumption does not discharge batteries resulting in a high SoC meaning that only a portion of the excess generation is captured (right, summer)
- *Peak reduction: Demand 28%, Generation 25%*

Maximum demand (winter)

- Scheme focuses on impact batteries can have on the network without considering optimal cost performance for owner (charges: 10:00-16:00, discharges 17:00-20:00)
- The grid import/export shows that none of the generated power was exported to the grid and in the evening the electricity imported is small
- Forcing all batteries to discharge reduces the evening peak by circa 60%

Maximum demand (summer)

- Batteries quickly reduce to a low SoC in the evening allowing them to absorb excess generation and assist the network on the next day.
- They manage to reduce the average export by up to 50% to approximately 600W compared to the 1000W during threshold charging

10

High level preliminary conclusions

- Battery inactivity during threshold charging scheme suggests that charging/discharging threshold must be set to reflect customer profiles
- Forcing the batteries to charge/discharge at their maximum rate during peak generation and demand is better than threshold
- A dynamic predictive generation scheme can be used to reflect changes in the weather and hence impact of batteries

Next steps

- Network modelling
 - Different PV and battery penetration levels
 - Different demand profiles
- Cost Benefit Analysis
 - Reinforcement Vs batteries (BtM & grid connected)
- Design policy recommendations
- Final report Q4 2019

Thank you!

- www.northernpowergrid.com/innovation
- paris.hadjiodysseos@northernpowergrid.com

13